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LYAPUNOV STABILITY CRITERIA
FOR RANDOMLY SAMPLED SYSTEMS

By Leonard Tobias
Electronics Research Center

SUMMARY

This study is concerned with the asymptotic behavior of
systems in which random sampling occurs; they are studied by a
stochastic Lyapunov function method. The control loops under
consideration consist of a random sampler (a sampling device
which closes at a set of statistically described times in lieu
of periodic intervals), a zero order hold, a linear plant, and
a feedback element. Sampled systems are modelled randomly when
sampler imperfections, such as jitter or skipping, occur or when
a single computer or communications link is a component of mul-
tiple control loops (that is, when the availability times of the
computer or communications link to a particular control loop are
random). This type of model has also been suggested for a human
operator performing a compensatory tracking function.

Improved stability criteria are given for systems whose
inputs are identically zero for all time. When the feedback
element is linear, sufficient conditions for asymptotic mean-
square stability and asymptotic stability with probability one
are obtained and compared. Necessary and sufficient conditions
are also presented; these are used to analyze the wvalue of the
sufficient conditions. Intersample behavior is studied and
results are presented for both stable and unstable plants.
Numerical results illustrate the applicability and utility of
the criteria presented and describe some interesting phenomena
such as jitter-stabilized systems. When random inputs are
present, a general method is given for the computation of the
asymptotic mean-square output at sample instants. This method
is illustrated by a computer program for a general second-order
system.

A randomly sampled Lure problem is studied and sufficient
conditions for asymptotic mean-square stability and asymptotic
stability with probability one are derived.

INTRODUCTION

This study is concerned with the asymptotic behavior of
systems in which random sampling occurs. A random sampler is
a sampling device which closes at a set of times t1, ts,..,
which are known only in a statistical sense.



Random sampling may occur unintentionally due to physical
imperfections in the sampling device. That is, a system is
desired in which periodic sampling occurs, but device imperfections
prevent this from happening. These imperfections are usually of
two types — imperfections in timing (jitter) and imperfections
in closing (skipping). In the case of jitter, the sampler does
not close precisely at the periodic sample times, but in some
neighborhood of these times. Skipping occurs when the sampler
is supposed to close at times, nT, but fails to make connection
at some of these times. If probability information is available
regarding the jitter width or the probability of skipping, then
precise stability conditions can be formulated. (Clearly these
will be different from the conditions for stability of periodically

sampled systems).

Intentionally randomly sampled systems may occur for many
reasons. Recent years have seen the increased use of digital
computers as components in control systems. This has introduced
new prcblems, since the digital computer accepts and supplies data
at discrete time instants; also, the same computer is often a
component of many control loops. Because one system may require
the full use of the computer during critical stages, the avail-
ability times of the computer to a particular process may be
described only in some statistical sense.

Space systems seems to be an area of fruitful applications
of random sampling analysis techniques. Consider an unmanned
Earth-controlled vehicle. Suppose it is desired to maintain a
constant velocity as the vehicle moves about the irregular,
hilly surface of the Moon. The vehicle carries a velocity sensor;
velocity information is sent via a communications link to an
Earth-based human operator, who sends velocity commands back to
the vehicle. However, via the same link, information regarding
surface rocks and soil, photographs of the lunar surface, etc.,
must be transmitted. Due to the multiple systems it must handle
and due to the unknown time of processing of information from
each task, the availability times of the link to a particular
task are random. Stability analysis is necessary to determine
the feasibility of performing a particular task.

There is a considerable active engineering interest in
obtaining mathematical models of the human operator in compensa-
tory tracking functions. Some consideration has been given by
G. Bekey et al. (ref. 1) to modelling the human operator with
randomly sampled systems. Young et al. (ref. 2), have proposed
a system for modelling of eye-tracking. Their model includes
two kinds of control. The first, called pursuit control, is an
open-loop control which is a continuous function of the rate of
target movement. Saccadic (or jump) control is the second type
of control which is introduced to account for large discrepan-



cies in eye and target position. It is closed loop and is
modelled as a sampler and hold followed by non-linearities and
delays. Two types of sampler models have been proposed — target-
synchronized and non-synchronized. The former implies that there
is a stochastic delay between the time the target moves and the
sampling time. The latter implies that samples are taken whether
or not retinal error has occurred.

Hence, an analysis of randomly sampled systems is required.
Some effort has been made in this direction, but much more
remains to be investigated. Brown (ref. 3) has investigated
sampled systems with jitter; filtering and control aspects of
randomly sampled systems are discussed in Chang (ref. 4).

The class of systems depicted in Figure 1 is considered.
The zero-order hold is a device which accepts the sample e (tj)
as input at time t3j, and has an output e(tj) for t in the in-
terval [tj, ti+1). Plants under consideration will be linear.
The first-order plant will be studied, followed by multiple-
order plants (computer implementation for multiple-order stabil-
ity conditions will be carried out). Feedback will, for the most
part, be linear, but scalar non-linear elements are also considered.
Asymptotic stability results will be presented for systems in
which the input is identically zero; also, mean-square output
behavior will be examined when the input is a stationary random
process.

ult)

7\ %) [ ranDOM ggggk «(t)| LINEAR x(t)
\T’/ SAMPLER HOLD PLANT

FEEDBACK

ELEMENT

Figure 1l.- The general randomly sampled linear system



The method of approach is a stochastic Lyapunov one; that
is, as in the deterministic sampled problem, one seeks a non-
negative functional V, = V(xp) of the solution paths {xp} such
that Vp41 - Vp is non-positive. The Lyapunov functions used
(1x1% for the scalar linear case, x'Wx for the multivariable
linear case and x'Hx + g [9f(a)da for the Lure problem) have also
been used for deterministic problems; however, the introduction
of randomness changes the framework of stability statements to
a probabilistic one; also, system performance may be radically
altered by introduction of randomness.

In the following section, areas of application of this
stability analysis are presented. Then results for undriven
systems are presented followed by the driven results; the
techniques are then used in non-linear systems. Some of the
results for undriven systems can be found in reference 5; for
proofs of the conditions stated in this report, see author's
doctoral thesis (ref. 6).

The contributions of Professor Leonard Shaw of the Polytechnic
Institute of Brooklyn and Professor Harold Kushner of Brown
University in the development of the theory of stochastic control,
in particular, as pertaining to the work presented in this
document, are gratefully acknowledged by the author; the author
is indebted to them for many helpful discussions and suggestions
during the course of this work.

STABILITY OF LINEAR UNDRIVEN SYSTEMS

This section is concerned with the class of systems which
can be modelled as in Figure 1. The simplest of cases is con-
sidered first; the case when the plant is first-order linear
and the feedback is a scalar constant K;. The plant is repre-
sented by Kj/s+rj. This has been redrawn as Figure 2. Precise
definitions of the types of stability considered appear in the
appendix, as well as some fundamental theorems. The following
notational conventions are adopted.

Nl: Let 0 < t3 < ty < ... be the set of times at which
the sampler closes

N2: A; 8 t547 - t4

N3: £, (x) é probability density function of A4
i

>

N4: ¢4 (s) characteristic function of fa,

E[e—SAi] =f fAi(x)e_SX dx
(o)

NS5: K = KjKj



N6: X, = X(tp)

Assume that (Al) Aj are independent and identically distributed
and (A2) to = 0 wpl and x(0) # 0 wpl.

u(t)=0

* RANDOM ZERO K1 x (1)
. SAMPLER ORDER s+r,

K2

Figure 2.~ Basic system for linear first-order undriven case

Theorem 1- If r > 0, a necessary and sufficient condition
for the system in Figure 2 to be asymptotically stable of order s
is

A K/r|® < 1. (1)

E | (1+K/x)e” T
If r < 0, we require the additional assumption that (A3) A; < Ty,
where T, < « is a constant independent of i. Note that for the
case s = 2 we have asymptotic mean-square stability and the con-
dition (1) can be written

(1+4K/1) 26 (2r) - 2K/r (L+K/r)¢ (r) + (K/r)% < 1. (2)

The inequality (2) can be found in Kalman (ref. 7) and Leneman
(ref. 8). However, the cases when s # 2 and r < 0 are not treated
there. The condition for stability of oxrder, s, can, via the Doob
Martingale Convergence Theorem, be used to establish a sufficient
condition for asymptotic stability wpl.

Theorem 2- A sufficient condition for the system in Figure 2
to be asymptotically stable wpl is that for some s > 0, the
system is asymptotically stable of order s.

Note that the condition for mean-square stability is not
necessary; that is, it is possible for the system to be stable of
order s < 2 but not for s = 2,



To illustrate how one can use these conditions, consider
Eg. (2). After some manipulation it becomes:

K) _ _em-o2n) 1% . 1-¢ (r) 2

r 1-2¢(r) + ¢(2r) 1-2¢(xr) + ¢ (2xr)
From the above, we deduce that for asymptotic mean-square stability
K must lie in the range:

r(l-¢(2r)) (3)
1-2¢ (r) + ¢ (2r)

-1 < K <

We now consider how the range of K is affected by parameter
variation of the densities.

Example 1, Exponential.- For exponential sampling with para-
meter ),

f. (x) =
A 0 x < 0

It is readily shown that ¢(s) = X%E

From Eg. (10),

K _ r(1-¢(2r))
max 1-2¢ (r) + ¢(2r)
A
_ T3 )
- 2\ A
(1 - 535 K+2r)

and via some simple algebra

K = X + r
max

Thus, 3K max/d9X = 1; we can show that E(x) = 1/X. Thus, we have
demonstrated the reasonable result that if the mean sampling time

decreases, the maximum allowable gain for stability increases
(for the first-order system under discussion).

Example 2, Uniformly distributed jitter over a time range of §
centered about a nominal sampling interval T.- From the appendix

_ _-sT sinh(sd§/2)
o(s) = e s§/2

, and using Eq. (3)



r(l - e—ZrT 51n26r 6)
Kmax = 1 2e—rT sinh r &§/2 -2rT sinh r §

- (rs/2) T ¢© ro

Note that when § = 0

_ r(1+e T

)
(1-e”*T)

K
max

which is the standard result obtained by conventional periodic

sampling analysis. A straightforward but tedious calculation
shows that

oK 2
3I§ax = r_2 {[—4 sinh[;—é-] - 2r$ cosh[lzr(S ]e_rT

2rT

+ [2 sinh (r8)-2ré8 cosh (rd)le

+ [4 sinh[lzr—é] cosh(r§) + 2 cosh [5—6] sinh(rcS)] e_3rT

[2 sinh (r§) cosh(rd)]e_4rT}

where m = ré - 4e YT ginh %é} + o 2rT sinh (xr$)

The above indicates analytically the manner in which the maximum
gain varies from a given T as a function of the jitter.

Before leaving the scalar case, let us briefly examine the case
of non-linear feedback. Suppose that in lieu of the previously
considered constant feedback gain Ky, we consider a non-linear
feedback element Kyf(+), where f satisfies

f(xn)

0 <p = %_ < U< (4)

It is readily shown that if the system is asymptotically stable
of order s when the feedback is the constant Kyu, then it is
stable for all scalar non-linearities satisfying Eg. (4).



MULTIPLE ORDER SYSTEMS

Sufficient Conditions

We now consider the system of Figure 3. For ts(tn,tn+l),
dx _ _
E = AX men, (5)

where x and e, are N vectors, m is a scalar, and A is an N x N
matrix.

u(t)=0
"\ «(t) [ rRanDOM oZREDREOR nfe , x(t)
\\ SAMPLER HOLD X=Mmeén
B K' -
Figure 3.- Basic system for linear multiple-order case
Let K' be the feedback N vector and define C = mK'. Thus
we may rewrite Eg. (5) as
dx _
ac - Ax C ¥ (6)
t
Hence x(t) = Bt ), _/.eA(t—T)dT C x
n e n
n
. AA -1 -1
and at sample instants, X 41 = (™" n(I-A "C) + A C)xn
or x =A_ X (7)



where A = eAAn(I—A'lc) + a"1lc (8)

We restrict attention in the multiple~order case to mean-
square stability and stability with probability one. Recall that
in the first-order case, a necessary and sufficient condition for
mean-square stability is that E(af) < 1, where a, = (1+K/r)e” rA
- K/r. One might suspect that the exten51on to multldlmen51ons
is that the elgenvalues of the matrix E(ApAp) be in the unit
circle. The above is a sufficient condition; that it is not
necessary will be clear from the ensuing theorems.

Theorem 3- Assume Al and A2. In addition, assume A3 if any
of the eigenvalues of the matrix E(AA,) lie on or outside the
unit circle. A sufficient condition for the randomly sampled
systems of Figure 3 to be asymptotically mean-square stable is
that all the eigenvalues of the matrix E(AnAn) lie in the unit
circle.

Aby -1 -1
Now let H = Ele ] (-2 "C) + A ~C (9)
AAi AAi -1
G, = (e ~-E (e )) (I-A ~C) (10)
Using this notation, we can write Eq. (7) as
Xn+1 = (H+Gn)xn
where E[GL] = 0. Hence we have represented the system as a
- deterministic system H with random perturbation G Suppose

that the deterministic system

Yn+1 © Hyn (11
is asymptotically stable. Let W be the solution of H'WH - W = -Q
for some p051tlve definite Q. Then it can be shown that the per-

turbed system is asymptotically stable wpl if E[G WGn] - Q0 < 0.

A computer study was undertaken to illustrate the application of
this criterion. This study will be described presently but first
necessary and sufficient conditions for asymptotic mean-square
stability will be presented; these can be used to gauge the merit
of the sufficient conditions.

One might naturally ask at this point, why bother with
sufficient conditions at all if necessary and sufficient con-
ditions are available? The answer is that the sufficient con-
ditions are easier to apply; also Lyapunov functions may be
known for the unperturbed system which may still be valid for



randomly perturbed systems. Finally, the methods of proof for
the sufficient conditions can be extended to non-linear situations.

Let us then briefly consider necessary and sufficient con-
ditions in light of the above and then turn our attention to the
computer study. Necessary and sufficient conditions for asymp-
totic mean square stability of discrete systems were first
obtained by Bharucha (ref. 9) in terms of Kraonecker products.

Consider the equation E(A'WA) - W = -Q where W and Q are
positive definite and symmetric. Let the n(n+l)/2 dimensional
vector I and Q denote vectors composed of all the elements of
W and Q, respectively. (Note that the vectors W and Q are not n2
vectors because W and Q are symmetric.) Then, E(A'WA) - W = —-Q
may be written as

AW - W = Q

Then a necessary and sufficient condition for asymptotic mean-
square stability is that the roots of A lie in the unit circle.

Computer Results

The purpose of the computer study is to illustrate the use
of the derived necessary and sufficient conditions and to deter-
mine the usefulness of sufficient ones. For the computer study,
attention was focused on the system shown in Figure 4. The sys-
tem is second order with two negative real roots rj and rp, and
the feedback is a constant gain K. The system equation is

gzg - (rl+r2)§% + r;r, x = - K x for te(tn,tn+l) (12)
Let

y= ¢ (13)

B = K/r;r, (14)

a =1+ B (15)

p = rzirl (16)

10



u(t)=0

+
O\ RANDOM ZERO ]
_\/ SAMPLER HOLD (S'rl)(S'rz)
K
Figure 4.- The second-order plant with two negative real roots

At sample
given by

X
n+1l

yn+l

where

apr

If the following random

n
n
A
- aprje
rlA
- apr

tion of E(A'WA) and A:

2
E(ay;) =

(up)2{r§¢(2rl)

—ZaBp{r2¢(rl)

lrze

instants, it can be shown that the above system is

(17)

(18)

2

- prie + ripe

coefficients are needed for the computa-

2r r ¢ (ry+r,) + ri¢(2r2)}

- r9(r,)} + 8

11



E(allalz) = —apz{r2¢(2rl) - (rl+r2)¢(rl+r2) + rl¢(2r2)}
—BP{-¢(rl)+¢(r2)}
E(allaZl) = (up)zrlrz{r2¢(2rl) - (rl+r2)¢(rl+r2) + rl¢(2r2)}
-Bapr T, {d(ry) - ¢(r,)}
E(a, a,,) = 0O 2{—r r.¢{(2r,) + (r2+r2)¢(r +r.) - r,r,¢(2r,)}
11222 P 172 1 172 172 172 2

-Bp{—rl¢(rl) + r2¢(r2)}

E(aiz) = p2{o(2r)) - 2+l 4T, + $(2r,))

E(a12a21) = —qP2r1r2{¢(2rl) - 2¢(rl+r2) + ¢(2r2)}
E(aj,a,y) = p2{rl¢(2rl) = (ry+r,)¢(ry+r,y) + r2¢(2r2)}
E(agl) = (aprlr2)2{¢(2rl) - 2¢(rl+r2) + ¢(2r2)}

E(a21a22) = apzrlrz{—rl¢(2rl) + (rl+r2)¢(rl+r2) - r2¢(2r2)}

= p2{ri¢(2rl) - 2rlr2¢(rl+r2) + r§¢(2r2)}

E(agz)

Hence E(A'WA) -W = Q may be written as

2
E(ajj)wyy + 2E(ajjayg)wy, E(ajja;,)wyy + Elag ay,

+ E(a2 Yw + a,-a.,)W + E(a, 8,4)W

IRALY. 212127V12 21322)¥55
2

E(a a,,)wy; + Elag3a;5, E(a),)wy; + 2E(a),a,,)wWy,

+ Anaqdqana)W + E(@n-8n4)W + E(a2 Yw

21212712 21322727 2292

VY11 Yi2\_ (11 a2
V12 Y2 d12 922

12



In column vector form, AW - W = Q

_/E 27;) 2E(a;18,) E(aZl) W) g ;) ay7

E(ajja;,) E(ajja,,) + E(ajyayq) E(ayia )l vy |-l wip |= | 915
2 2

(alz) 2E(a12a22) E(a22) Woo Voo s

The sampling considered was uniformly distributed jitter
with a range § centered about a nominal sampling interval T. It
should be clear from the above that the parameters in this study
are ry, Irp,, T, 8§, K; for a given set of such parameters, one can
compute E(a'wa) - w (for a given W) and also A by using the for-
mulas given above.

In one series of runs r o, T and K were fixed; § was
varied and for each §, the matrlx A was computed. Let p = maximum
magnitude of any eigenvalue of A. Hence, plots of p vs § could
be obtained. A sample plot is shown in Figure 5. The line p =1
represents a stability boundary. By the theorem derived earlier
p < 1 is a necessary and sufficient condition for mean-square
stability. The line 6§ = 2T is a physical boundary since if
§ > 2T, it means that there is a positive probability that the
(n+l)st sample occurs prior to the nth sample. For the typical
plot shown pj = p(o) = the maximum eigenvalue without jitter.
6max = the amount of jitter above which the system is unstable.
Figure 6 represents an actual run for the set of parameters shown,
where p; = .7 and Spax = .61l. The interpretation of the graph
is that the introduction of jitter causes an increase in p; when
a sufficient amount of jitter is introduced, the system is no
longer mean square stable; hence, one may conclude that jitter is
destabilizing for this set of parameters. Flgure 7 is another
plot of p vs. 8. Here py = 1.06, but as § increases, p decreases.
In fact, in the region 6 £ [1.85, 3.152] the system is operating
in the stable region. Hence, the conclusion is that jitter has
stabilized a deterministically unstable system.

In order to check this surprising result, a digital simula-
tion was made. A standard IBM 9094 random number routine, RANDU,
generated a series of pseudo-random numbers uniformly distributed
between zero and one. These numbers were then shifted and
stretched so that a sequence of numbers with a uniform distribution
§ about a nominal sampling time T was obtained. Then the recur-
sive equations (17) were solved iteratively. This was done for
the initial conditions x5 = 1 and y, = 0 and the same parameters
as in Figure 7. The values xp, A, were printed out for n = 1,
cee, 1000. With 6 = 0 (no jltter? XlOOO = 1.81 x 1012 ana

13
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Figure 5.- A typical
p vs § plot

Oy
1 S S =8
S max 2T
P
Figure 6.- Actual p vs §
plot for
XK =29.1,
r = ~1.0,
r2 = -2.0,
T = 1.0
P
1.06
P
1.04 |
Figure 7.- Actual p vs §
plot for
ozf K =1¢6.0,
rl = —l.O,
ro = -4.0,
Lopb— \—/ . T = 2.0
98
) 5 10 5 20 25 30 35 3
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Yiooo = —8.32 x 1011, (standard deterministic analysis shows
that for K > 5.86, the system is unstable.) With § = 1.0,
X1000 = —-183, Y1000 = -.0562. Clearly the system is on the
verge of 1nstab111ty. With 8§ further increased to 2.5, Xpn = ¥n
= 0.0 x 10°38 for n > 400, indicating that the system is now
stable.

Runs were also made for fixed rj, ry, T in which § max
was plotted against K. Some results are in Figures 8 and 9.

A series of runs were made to determine the effect of the
choice of Lyapunov function on the stability estimate. Recall
that it has been shown that for a given W which is positive
definite and symmetric, if

E(A'WA) - W < O,

then the system is mean-square stable and asymptotically stable
with probability one. Since the condition p < 1l is necessary and
sufficient, the goodness of the estimate using a partlcular W can
be determined by finding the min § = Sy such that E(A 'Wa) -w < 0
is no longer valid and comparing it with § max.

The following series of runs were made: fix r r,, K and T
(K and T were picked so that with § = 0 the system 1s stable).
For Q = % 03), find W which satisfies ATWAT - W = -Q where Aq is
the matrix when 8§ = 0. Jitter is introduced incrementally and
E(A'WA) - W is computed until Sy is determined. The run of Table I
is for T = 1., K = 10., r = -1., ro = -2,
TABLE I - RUN 1 TABLE II - RUN 2 TABLE III ~- RUN 3
3 Sw 9 Ow 9 Sw
0.00 .40 .1 .04 0 .05
.05 .35 .5 .10 .5 11
.10 .31 1.0 .13 .0 .13
.20 .26 2.0 .26 -.5 .12
.50 .18 10.0 .31 -.9 .07
1.00 .13 15.0 .34
20.0 .36
From Figure 8, &, x = .42. Hence, satisfactory bounds are obtained
as g3 > 0. Table II illustrates a series of runs for Q = ( 1
and the same parameters r r5, K, T as Table I. Clearly, satis-

factory bounds are obtalned as qj gets large. Hence, it seems
that limiting values of g; and g5 yield Lyapunov functions with
the best estimate. Table III is included here to show that off-
diagonal elements do not seem to improve the estimate Note that

1 q
Q=< 2).
qzl

15



16

)

max
2T

MAXIMUM % JITTER (=% OF

100 —_—
Tr2.0|
80 -
g 60 I
Elov
0]
[
o
#
a 40 T:1.6 T=.0
w
-
£
-
N
T 20f
3
x
<
=z
1 ! I
o 5 10 15
Figure 8.- Maximum % jitter vs gain K for
r. = -10, r, = -4.0
1 T2
100
80 i~
60 -
T=2.0
40
20
F )
o] 2 4

Figure 9.- Maximum % jitter for ry = -1.0, r, =




LINEAR DRIVEN SYSTEMS

Suppose that the system previously considered is driven by
a non-zero input u(t). The class of inputs u(t) which will be
considered are those which can be represented as outputs of a
linear filter driven by white noise. The system under consider-
ation is depicted in Figure 10 and is given in equation form
below:

dx _
E‘ = AxX + Bu CXn (19)
du = Du dt + Fdw (20)
where dw is white noise. (For a discussion of equations like
Eg. (2 F, see reference 10.)

i u VR

(sI-D)! B \\’/ (s1—A)"

RANDOM
MP
SRMRES g
Figure 10.- System with gaussian input

At sample instants, Egs. (19) and (20) become

t
AA AA .[ n+l A(t -1t) D{(t-t_)
n,, -1 n n+l n
X 41 = [e +A T (I-e )C]Xn + [t e Be dT]un
n
th+l At 1-T) T p(t-%)
+ e B[ e Faw(7)] drt
tn tn

17



t
n
X
Let yv =
u
AA AA tn+l A(t -1) D(T~t_ )
An = e M4 A_l(I—c )C f e n+l Be mar
tn
0
eDAn
Y T D(1-%) A
B e F dw(T) d4dt
n
b
n
F dw(T)
Thus we can rewrite the above as
Yo+l = Anyn + bn'
It can be shown that if Yn+1 = Ayn is asymptotically mean-square

stable, then
lim Ely Qy_] = E[b'¥Wb]

~

where Q > 0 and W > 0 satisfies

E(A'WA) - W = - Q.

Thus, we can compute the asymptotic mean-square behavior if
we know certain undriven properties of the system (the Lyapunov
function W) and the parameters of the input. It is also possible
to obtain estimates of intersample behavior but this will not be
done here. The procedure is straightforward and will now be
illustrated by a second-order example.

18



We consider the system shown below (Figure 11):

alt) + RANDOM ZERO K x(1)
— SAMPLER oggfg (S+r)(S+r)

Figure 1l1l.- A second-order driven system

The expression u(t) is a stationary process with autocorrelation

—r3t
Ru(t) = e Ty < 0 (21)

We seek lim E(x2).
n n

Solution.- First, in order to apply the previous theorems and
corollaries we need an appropriate model of the input process,
u(t). The model we seek is a differential system driven by
white noise; it can be shown (Papoulis, ref. 11) that a suitable
model is

du = ry u dat + V—Zr3 dw

Thus, the input system at sample instants may be represented by

tn+l
r3A r3(tn+l—r)
u 1 =e” u + /2rg e dw (1) (22)
t
n

By slightly modifying the analysis in the previous computer
study (p. 10) of a second-order example to include an input, we
can obtain the following system of equations at sample instants:

X X 0
n+1 n
An bn
yn+l = r3An Yn + 0
o' e
un+l un hn

19



A is defined by Eg. (18).

rlA r2A
by —Bp(rze - rye ) + B
b = =
n r-A r, A
b -B r,( 1 -e 2 )
5 prir, (e
t
“n+l
r,(t -T)
+
h=—2r/ e 3 P auw(n
n 3
t
n
A b
n
0' e
r, A
C = e 3™n
n

h, is a normal random variable with 0 mean and variance l—¢(2r3).
In addition, the following constants will be needed.

E(c2)

¢(2r3)

E(bi) (Bp)2[%§¢(2rl) - 2rlr2¢(rl+r2) + ri¢(2r2)]
- 8%p(ry0(x)) - r0(r,)) + 82
2 2 2
B(by) = (8p)° (rymy) 2[0(2r)) = 20 (xp4ry) + (25,

E(blbz) = (Bp)zrlrz[r2¢(2rl) - (rl+r2)¢(rl+r2) + rl¢(2r2)]

- 8%pr r,{o(r)) - ¢(r,))

E(ap;€) ap{r,¢ (ry+ry) - rid(rytry)} - Bé(ry)

E(a,,C) —p¢(rl+r3) + p¢(r2+r3)

12
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E(a,.C)

21

E(a,,C)

22

E(blc)

E(bzc)

E(a;;b,y)

E(a;,bq)

E(ayiby)

E(a22bl)

E(allbz)

E(a;,b,)

E(ay;b,)

E(ay,by)

= _p{rl¢(rl+r3)

= aprlr2{¢(rl+r3) - ¢(r2+r3)}

- r2¢r2+r3)}

=Bpr, ¢ (ry+ry) + Bpri¢(ry+ry) + B¢ (r,)
—Bprlr2{¢(rl+r3) - ¢(r2+r3)}
= —ap?8{rZ¢(2r;)

2

- ryé(ry)} + aBplr,¢(ry) - rl¢(r2)} - B

= sz{r2¢(2rl) - (rl+r2)¢(rl+r2) + r1¢(2r2)}

- ¢(ry)}

= —asrlrzp‘{r2¢(2rl) - (rl+r2)¢(rl+r2) + rl¢(2r2)}
+ aBprlr2{¢(rl) - ¢(r2)}

2 2.2
= Bp {rlr2¢(2rl) - (rl+r2)¢(rl+r2) + rlr2¢(2r2)}
- pRird(ry) - ry0(ry)}
= —aszrlrz{r2¢(2rl) - (rl+r2)¢(rl+r2) + rl¢(2r2)}
+ 8%pr r (o (r)) - ¢(x,))

= Bp2r1r2{¢(2rl) - 2¢(rl+r2) + ¢(2r2)}

—aB(rlrzp)2{¢(2rl) - 2¢(rl+r2) + ¢(2r2)}

- szrlrz{rl¢(2rl) - (ry+r,) e (r+r,) + ry0(2r,))

- 2r 0 (r4ry) + rie(2r,)} + 8%plr,(r))

- pBL¢ (x;)
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We must now solve E(A'WA) -W = -Q for W, where

1 0 0

0 0 0
W W W
1 2 4
. W, W, Wy
Let W= W, W; W W= W =
oW oW Wy, Wy Wg
4 5 6
It can be shown that
E(A'WA) | E(a'#b) + E(a'WC) B

E(A'WA) = < T - 20 5
E(b'Wa) + E(cw'a) E('Wb) + 2E(ch')W + E(C?)W,

Thus, the solution of E(A'WA) - W = -Q may be carried out via the
consecutive solution of

T A ~ l O ~
E(A WA) - W= - for w
0 o0
E(b'WA) + E(CW'A) - W= (0 0) for W
E(b'Wb) + 2E(Cb)W + E(C®)W, - W, = 0 for W,.

This is a simple matter for the digital computer. From theorems
previously developed

]
X ' X 0 0
lﬁflE Yn Q Yo |= E 0 W 0
u u hn hn

or ljnlE(x;xn) - E(hrzl)w6 - [l—¢(2r3)]w6.
n
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As an illustration, consider the sampling device to be subjected
to uniform jitter, D, about nominal sampling time, T. Let

K = 10.0

T = 1.0

D = .2

ry = -1.

r, = -2, )
ry = -.5

With the above data and using a straightforward Fortran program,
we find that

l%mE(xi) = 1.519 x 102 = 151.9.

At first glance, this might seem unusually large since the
variance of u is v (2) (.5) = 1. However, note that the gain K

is in the forward loop and so with K = 10 the input variance

is 100. With K in the feedback loop, the asymptotic value of the
output's second moment was computed to be 1.519.

RANDOMLY SAMPLED LURE PROBLEM
The methods developed for linear systems will now be utilized
to analyze a system with a scalar non-linear feedback element. For

a discussion of the deterministic problem, see Lefshetz (ref. 12).

The system equations are (see Figure 12):

X = AX - mf(on) ts[tn, tn+l) (23)

c = c'x (24)
where x, m,_and c are N vectors and ¢ is a scalar; where A is
an asymptotlcally stable N x N matrix; op = o(tp), and the
following assumptions are placed on the scalar function f:

£(0) =0

of(g) > 0 g #0

af
do

U
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g
I(o) = f£(8)as > o
o}

I(c) - ©» as 0 -+

ult) dx = A
+ qr_"AxTme
/’"\\ RANDOM « x
SAMPLER
./ 8 HOLD
do
. i 1 dt c’
(- 5

Figure 12.- The randomly-sampled Lure problem

A straightforward integration of Eqs. (23) and (24) yields

Xn+l = Anxn + anf(on)
0n+l = c’n - bnxn + rn
where
AA

A = e n

n

AA
a = A_l(I -e Mnm
n
AA
b, =c'al(r-e D
n
AA

r =c'A_l[AI+A_1(I—e n):lm
n n

We consider the Lyapunov function

x"Hx + qﬁ/ﬂf(a)da

o

Vix,o)
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where g > 0 and H is positive definite. This has been used by

Szego and Pearson (ref. 13) for the discrete time deterministic
Lure problem. The following applies to the system of Figure 11.
Suppose that there is an H > 0 and a g > 0 such that C; < 0 and

-1

[ ]
p > dCl d
where

C

] - -IJ )
1 [E A HA - H + iqbnbn]

_ 1 _]J l__l
da = E[anHAn -z-qrnbn 2bn]

= : uq, 2
p = E[anHan + qr, + > rn]

Then the system is asymptotically stable wpl.

One can obtain bounds for intersample behavior and can
obtain estimates of asymptotic behavior when inputs are present,
but these questions will not be considered here.

CONCLUSION

Systems which can be modelled as randomly sampled linear
systems have been studied by a stochastic Lyapunov function
method. Stability criteria have been presented when no input
is present and asymptotic behavior of driven systems has been
studied. The conditions obtained are straightforward to apply,
as the discussion of the computer implementation has indicated.
In the present form, the conditons are directly applicable to
the study of systems with jitter or skipping to determine the
effect of these imperfections. However, prior to use in other
practical situations the following modifications should be
incorporated. TIf one wants to analyze remote control systems,
time delays in the control loop must be considered; also, for
application to compensatory tracking functions one should give
serious consideration to dead-zone non-linearities in the forward
path. Both of the above constitute areas of future research.

25



10.

11.

12.

13.

26

REFERENCES

Bekey, G. A., Biddle, J. M., and Jacobson, A. J.: The Effect
of a Random Sampling Interval on a Sampled Data Model of the

Human Operator. Proceedings of Conference on Manual Control,
Ann Arbor, Mich., 1967.

Young, L., et al.: Revised Stochastic Sampled Data Models
for Eye Tracking Movements. Proceedings of Conference on
Manual Control, Ann Arbor, Mich., 1967.

Brown, W. M.: Sampling with Random Jitter. J. Soc. Industr.
Appl. Math., vol. II, June 1963, p. 460.

Chang, S. S. L.: Optimum Filtering and Control of Randomly
Sampled Systems. IEEE Transactions on Automatic Control,

October 1967, p. 537.

Kushner, H. J., and Tobias, L.: Stability of Randomly Sampled
Systems. IEEE Transactions on Automatic Control, August 1969.

Tobias, L.: Stability of Randomly Sampled Systems. Ph.D.
Thesis in System Science, Polytechnic Institute of Brooklyn,
June 1969.

Kalman, R. E.: Analysis and Synthesis of Linear Systems
Operating on Randomly Sampled Data. Ph.D. Thesis, Dept. of
Elec. Eng., Columbia University, New York, New York, 1959.

Leneman, O. A. Z.,: Random Sampling of Random Processes, Mean
Square Behavior of a First-Order Closed-Loop System. IEEE
Transaction on Automatic Control, vol. 13, August 1969, p. 429.

Bharucha, B. H.: On the Stability of Randomly Varying
Systems. Ph.D. Thesis, Department of Electrical Engineering

University of California, Berkeley, July 1961.

Wonham, W. M.: Lecture Notes on Stochastic Control. Center
for Dynamical Systems, Brown University, Providence, R.I.,
Lecture Notes, February 1967.

Papoulis, A.: Fourier Integral. McGraw Hill, 1962.

Lefshetz, S.: Stability of Nonlinear Control Systems.
Academic Press, 1965.

Szego, G. P., and Pearson, Jr., J. B.: On the Absolute
Stability of Sampled Data Systems: The Indirect Control Case.
IEEE Transactions on Automatic Control, vol. 4, 1960, p. 160.




APPENDIX
SOME RELEVANT DEFINITIONS AND THEOREMS

A few definitions and theorems will be present which are
used throughout this paper.

Definition A.l1 - Mean-Square Stability of a Random Process.-
x(t). x(t) is mean-square stable if ¥e > 0, d8(e) > 0 such that
if ||x(tx)|] < &, then E(]|x(£)||2) < &, for all t > tq.

Definition A.2 - Asymptotic Mean-Square Stability.- x(t) is
asymptotically mean-square stable if

(a) x(t) is mean square stable

(b) lim E[||x(t)||2] = 0

t>oo

Definition A.3 - Stability With Probability One.- x(t) is stable
with probability one if ¥e > 0, €' > 0, d8(e,e’) > 0 such that
if ||x(to)|| > §, then

P[ sup ||x(t)]] > '] < ¢
t2tg

Definition A.4 - Asymptotic Stability With Probability One.-
x(t) is a symptotically stable wpl if

(a) x(t) is stable wpl

(b) 1lim x (t) = 0 wpl
t->o0
Definition A.5 - Non-Negative Supermartingale.- Let x, be a

discrete Markov process and let V, = V(xp) 2 0 have the property
that

E[Vn+l | xn] - v, = -K(x)) < 0.

Then the sequence {V_} is called a non-negative supermartingale
sequence.

Lemma A.l - (Doob Martingale Convergence Theorem) .- Suppose that
{v,} is a non-negative supermartingale sequence. Then there is
a V 2 0 such that v, » wpl, and

P{ sup V_ 2 ¢ | x = x} < %V(X)
ne [0, «]
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Also[E%Kr1 | X, = x] <V, and K, > 0 wpl.

(For proof, see references A-1 and A-2.)

Lemma A.2 - Let {x,} be a Markov process and V(x) a non-negative
function. Suppose E[V_, ; | x 1 -V, < -8v , ¢§>0.

s e | x =x} < %V(xo)

Then P{ sup v, (1-8) o

ne[0,«]

. n _ _
and l;m E[V_ (1-6;) | X, = x} = 0 where §,£(0,6).

Now, we shall restrict ourselves to first-order systems and
make two more definitions for that case.

Definition A.6 ~ Stability of Order s (s > 0).- x(t) is stable
of order s if ve > 0, d6(e) > 0 such that if lxols < &, then
E(|x(t)][S) < e.

Definition A.7 - Asymptotic Stability of Order s (s > 0).- x(t)
is asymptotically stable of order s if '

(1) x(t) is stable of order s
(2) 1lim [E lx(t)ls] =0
£
REFERENCES
A-1 Doob, J. L.: Stochastic Processes. J. Wiley, 1953.
A-2 [Kushner, H. J.: On the Stability of Stochastic Dynamical

Systems. Proceedings, National Academy of Science, vol. 53,
1965, p. 8.
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